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1.0 INTRODUCTION

' This is the final engineering report on Task D of NASA Contract No.
NAS6-2307. This task comprised a study of experiment requirements, of
.technical characteristics, and of the GEOS-C radar altimeter related analyses.
In addition to the work reported herein, a study of engiﬁeering teét data re-
quirements was also conducted; results of this.activity were documented in a
‘report distributed in December, 1973,

Chapter II of this report contains statistical analyses related to deter-—
mination of wave height resolution achievable as a function of system character-
istics and averaging period. An equally imﬁortant topic of this chapter is the
desirability of using computer procedures to compensate for altitude tracker
time-jitter.

Chapter III examines data processing considerations for the GEOS-C
system. An extensive analysis.of the spatial filter effect is given and
results of a computation of geoidal power spectral density, based on Skylab
altimeter data, is displayed and interpreted in terms of projected GEO3-C
random errors. This information is then used in deriving minimum-mean-square
fiiter procedures for both geoid undulation and slope data.

Chapter IV examines the characteristics of mean received waveforms as a
function of off-nadir angle. This information is then used to obtain tracker
bias as a function of sea state and pointing angle. The angle estimation
process proposed by the GEOS-C hardware contractor (GeneraliElectric) is

also investigated from a standpoint of achievable angular resolution.



2.0 ANALYSIS OF GEO0S-C WAVEHEIGHT RESOLUTION

2.1 Summary of Results and Recommendations

The main body of this section is dEVOted to an analysis of ﬁaveheight‘
resolution, in significant waveheight units, achievable yitﬁ the GEOS—C
altimeter, and the effect of uncorrected altitude tracker time-jitter on
resolution. The final results of this analysis are shown in graphic form in
Figures 2.1 and 2.2. Results for pulse lengths of 10 and 12.5 ns are given
beﬁause currently available GEOS-C test data shows the pre-detection pulse
width to be ~ 13 ns at the 6 dB ﬁoints. Since a square-law detector is used,
this implies a post-detection pulse width of 13 ne at the 12 dB points and
we estimate that the video filter would increasé this pulse width tb ~ 10 ns -
at the 3 dB level. Figure 2.1 shows that for the 10 ns pulse length with
expected time jitter (*3 ns), 80 percent of the observations will be within
+25 percent of the correct value for significant wave heights (Hl/3) of 2 3
meters. Below this H1/3 value the resolution degrades rapidly. For a time-
jitter of 6 ns, the corresponding H1/3 value is ~ 3.5 meters. To allow a
comparison with other results, this figure also shows a "one-sigma" confi-
dence level result; here the 25% resolution value intersects the curve at
H1/3 = 2.4 meters. We do not recommend use of this bound.

Figure 2.2 shows similar results for a 12.5 ns pulse width. Here the 6 ns
jitter case *25% resolution point 1s seen to occur at ~ 4,25 meters. For
an rms tracking jitter of 12 ns (which i1s considered to be in the category of
substandard data) the #25% resolution point is ~5.15 meters; Note that if the
12 ns rms jitter is assumed to be correctable (at H1/3 = 3.6 meters),  tracking
jitter correction is equivalent to an extension of the averaging period by a
factor of 2.5 (waveheight resolution is proportional to the square root of
the averaging period). RO

Both Figuréé 2.1 and 2.2 are based on an averaging period of 20 seconds.
This value was used since we feel it represents an approximate upper bound
on averaging period, unless a priori information is available regérding ocean
surface homogeneity.’,Siﬁce high seas are of quite low probability on a global
scale, it would be highly desirable to be able to collect experimental wave-
height data as it exists,_in the planned GEOS-C calibration area. For an
experiment that requires high seas {(e.g., the North Atlantic in the winter

months), the acquisition of aircraft sea-truth data is a formidable task.
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To provide soﬁe insight into the problem of extending the data averaging
period, two randomly selected sea-truth charts are shown in Figures 2.3 and.
2.4. These were supplied by NOAA during the Skylab program's SL-2 and SL-3
missions., Figure 2.3 shows a 3 meter H1/3 isocontour cr?ssing for pass 9
and 2 meter isocontour crossings for pass 8 — for the wind-driven (non-swell)
data shown. The scaled time periods for the ground track to traverse these
areas are 10 and 18.6 seconds. 1In Figure 2.4 the subsatellite path crosses
two l-meter contours -in approximately 20 seconds.

Based on the above discussed results, the ~3 ns rms tracking jitter
level anticipated for the GEOS-C altimeter is seen to produce a relatively
small degradation in wave height resolution. Therefore, under assumed nominal
altimeter performance we do not recommend corrections in the waveform averaging
process to compensate for the altitude tracker time-history. I£, after launch,
for some reason the altitude data quality should seriously degrade (»12 ns
rms noise) the question of time-~jitter correct}on should be re-examined. The
need for corrections in.the waveform averaging process for deterministic
orbital effects is an unexamined question. For an assumed altitude rate of
change of 50 meters/second, dus to orbital eccentricity, and a tracking loop
correlation interval of ~50 milliseconds, the altitude change during the
correlation period is 16 ns. Hardware test data should be available in the

near future to permit an assessment of the effeet of such altitude rates on

tracker variance.

2.2 Analysis of Tracking Time-Jitter Effects and Waveheight Resolution*

Our main purpose in this section is to anlayze the éffect of altitude
tracker-induced time-jitter in the sample-and-hold (S & H) data on waveform
averaging and waveheigh£ resolution. Because of the small tracker (and thus
S & H gate position) standard deviafian (~3 ns) relative to the "flat sea"
rise time, we degire to examine the effect of neglecting tracker time-jitter
in the reconstruction process. Figure 2.5 shows presently planned waveform
data processing prqcedures'and the overriding importance of this effect.

In the foilowing'Analysis'we examin< the uncertainty in the estimate of
the received wavéform as a function of averaging period. Since a single
received waveshape is an ensemble member of a random process, the greater the

number of waveforms averaged the lower the uncertainty‘in mean value and thus

*A major part of this section was contributed by A. €., Nelson.
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the greater the waveheight resolution. The upper limit on averaging period
is determined by ocean surface homogeneity; typical data relating to waveheight
spatial variability was given in Figures 2.3 and 2.4. Receiver noise can be
shown to produce little effect on waveheight resolution ﬁor'prewdetection
signal-to-noise ratios 2 10 dB, and this effect will not be considered.

In the following we will assume that the point-target pulse shape and
the waveheight-probability distribution are both Gaussian functions. This
will give rise te an average‘waﬁeform which is a cumulative Gaussian, as shown
in Figure 2.6, and will permit closed form analysis of several important’
parameters. Since the received waveform corresponds to the integral of a
Gaussian which in turn is the convolution of pulse shape and waveheight Gaussian

functions, the composite variance is:

or from Figure 2.6 the composite standard deviation in nanoseconds is

)
T = ¥(.508 H.,.)" + (.602 T )
s i/3 < p

where H1/3

width in nanoseconds. Therefore, a ramp period, Tr_(the dotted curve in

is a significant waveheight in feet and Tp is the 3 dB video pulse

Figure 2.6) may be defined as:

2 2

T, = 2.58 ‘[258 Hl/3: + .362 Tp

' 2 2
- 1.31\/111/3 +14 T, .

This represents the time expanse of.the ramp period as defined by the projection
of the mid—point'élope as shown in Figure 2.6. On this basis the ramp period

is equivalent to 1.55 Tp for the case of Hl/3 = 0. Other rise time definitions
could have been used. qu.example, rise time of pulse-like waveforms is
sometimes taken as the 7 and 93 percent amplitude points. The definition

uged here is conveniént because of its relationship to the mid-point slope.

' First we consider the statistics of tracking jitter as these are affected

by quantization and correlation properties of the altimeter system. In the



10

+1.29T
s

Mean Waveform

Radar Pulse Shape : Wave Height Distribution

T T ] i Ll L) ! I i \
cg
t
= oft, = —/—
or o = .602 T (T3:ib = O.S_Tp) o, = 2.03 oft.
for T, = 3db video pulse width in ns H1/3 = & oft.
. o =203 (y1/3) = 508 B 1/3

t 4
' (H 1/3 in ft.)

Figure 2.6 Waveform Relationships



I

11

Skylab altimetér,'altitude tracker standard deviation and quantizer step-. __
size were comparable in magnitude; therefore, on ﬁhe_average, the output
signal constituted roughly a 4 level discretelrandom process. With the
much smaller step-size used in the GEOS-C system, the range tracker signal
more nearly resembles a continuous-time process. ' .
Statistics of the mean-waveforms derive both from the chi-squared dis-
tribution of the basic received waveforms and from the superimposed time
jitter of the tracking process. Since 100 statistically independent waveforms
are received per secdnd and the tracker jitter decorrelates in about 10 wave-
forms, the central question is the time-wise behavior of the combined process.
Starting with the normalized cumulative Gaussian to describe the mean

waveform, (t-1) /T
s

2 .
g(e) = o = 5= f exp {- %3} dx,
8 -

-t

the probability that the jitter is kT (where T = 5/32 ns is the GEOS-C
quantization value) is given by the discrete Gaussian density function,
= o(FT) _ o ABDT) - 11, 42, 4300

2G

P
k 3 i

Py = 2Go) - 2G50, k=0,
k| |
where 1 is the mean on the time scale corresponding to the normalized mean
voltage equal to 0.5, and Gj is the standard deviation of the jitter process.
We first consider the idealized case in which the tracker signal only
executes step changes eﬁery 10 pulses and then examine the validity of this
simple model. Assume that N, = 10 iﬁéependent samples of the tracker signal

and N £ 100 independent waveform samples are available per second; then

it ispdisired to relate the variance of the average of N waveforms to the
parameters Ts’ Hl/3’ andgdj ( assumed to be 3 ns), in order to provide some
knowledge of sea state resolution. The time varying received gignal has a

~X2 (chi-square) distribution with 2 degrees of freedom, with mean and standard
deviation both equal to g(t + k1) where kT is the tracking jitter. With no

jitter the average of N = 100 independent or uncorrelated signals would have
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a variance equal to gz(t)/100. With tracking jitter the average of 100 such
waveforms would have a mean and variance as determined below.

The following derivation is limited to the determination of the mean
and variance because the average of fifteen XZ variables can be assumed to
have approximately a Gaussian distribution. Typically, the Xz distribution
with 30 degrees of freedom is approximated by the Gaussian distribution.
This would occur on averaging 15 X2 variables each with two (2) degrees of
- freedom because of the additive property of the X2 distribution. The
determination of the mean is not affected by the correlation between suc-
cessive values of the tracking jitter and fhe results given below are general
in this respect. On the other hand, the correlation of the tracking jitter
does affect the variance but this is minor when the sample size is large.
The effect is small because: (1) jitter variance is small compared to the
composite variance, and (2) relative length of the averaging period is
large, (say, greater than 1 second) as compared to the less than 0.1 second
period over which the correlation is positive. Utilizing these remarks, the

following derivations are performed.

2.2.1 Computation of the Mean Wlth Jitter Fresent

Let the average of r = 10 waveforms (for 0.1 sec.) be denoted by v(t)
and for N waveforms {or N/100 seconds) by v(t). The jitter value is fixed
for r waveforms and then shifts to another value independently selected from
the statistical distribution. This is an approximation to the actual waveform
process with autocorrelation function given by Table 3.1, of [1] which shows
that on the average, the actual waveforms shift and decorrelate in-0.1 seconds.
The average of N waveforms Gill be given by:

7 =’E rngk/N, n=ZIn = N/r,

s L
-

My
where : v = jil vj(t+k‘r)/rnk

- E{F} = B, B |n)

= Pgﬁz rn, g {t+kr)/N}
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=L rnp g(t+kT)/N = L P8y 8 = g(t+kT).

If the jitter variable is denoted-by Xl and the composite variable
(waveform) by KZ’ the sum (for the case t = U which occurs at the midpoint

of the ramp)

L Py g{t+kT)

can be approximated very closely for small T (jitter step in ns), by the

integral:

X is in the X, is less than
f Prob. {71 orval G kbaiy] © PPPr U2 oF Coval to kf 9K

and this is equivalent to:

P{x1 > Xz}

which is equal to 0.5 for t = | ‘because Xl is N{0O, 0 ) and X2 is N(O,T )
Ift=1+ T, say, it can similarly be shown that the sum Zpk g(t+kT) is

approxlmately equal to

Prob.. {Xz LX)+ 'rs}'

where X; and X2 are distributed as above and thus X, Xl-T is N(—TS, G +T )
As an example, for TS = 8.8, Gj = 3, T2+U§ = (9.3)2

CIg
Prob. [ 5 o 0-9462] = 0.8279
g,+T
. . V i’s

Thus the mean is biased slightly downward at t = u+Ts; without jitter it is
0.8413, TFigure 2.7 shows the mean waveform distortion due to uncorrected .
tracking jitter. i '

Note that this result can be'generalized to any multiple m of TS to
yield

o L p, g(t+kr)

= < :
Prob. {X, < X +uT_}

This notation denotes X, is normally dlstrlbuted with mean 0 and- standard

deviation Oj. 1
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given by

mTS P

Prob. zu < “"E—"E* s
where v Gj -!—'I'S s

v 2 2
T, = \/(ofsos Hl/3) + (.602 Tp)

Gj = gtandard deviation of trdéking jitter (in ns)

Hl/3 = waveheight (in feet)

2.2.2 Computation of the Variance With Jitter Present

The variance of v(t) is computed by use of the formula,
2..-_'__ 2, = 2 =
o {v} = Eg?ﬁ{vln} + o E{¥[nl.

See reference [2] for these genmeral formulas for the unconditional-
means and variances in terms of the conditiomal means and variances. The
subscript variable indicates the one with respect to which the moment is

being taken conditional on the remaining variables being fixed.

Imv
2% ™Ml L 1
A e A

: 2.2 2
N2 Zrne (t+kr)/rn;]

- T pkgk

: : L,V
2 = _ 2 k'k
-anﬁ{v]n} = GEFG--——SF—-}

By 3 :ﬁig(t+kr)
= % N }

].[ 2 | 1
= % g {np, (I-p,)} - 2 L g, g,np P,
] R rep K2Ry

i

Substituting the results in equation (2) yields

2 = 1 .- 2.1 2 2
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Using the following relationship
' 2 _ 22
(Ip, g )" = Zppgy + Zkggpkpggkgg,
The above becomes
2,=, _ (xr+l) 2 _ 1 2
o {v} = ——;E—-Zpkgk o (Epkgk) .

If n = 10, r = 10, N = 100,

2,=y _ 11 2 __;L 2
o"{v} = 155 EPpB ~ To (ZPyy) -
The calculations become tedious for T = Eg-ns, as there aré at least

2 x 6 x 32/5 = 87 intervals for inclusion of 95% of the jitter values. An
approximation was run by using T = 40/32 ns and the results extrapolated

to T = 5/32 ns for the case in which

T = B.8 ns
s

g, = 3 ns

3

t=ldand t =u + TS.
In this example, at t = Y,

5 pkgi = 0.2643, I p g = 0.5

E{V} = 0.5.
Therefore with jitter
| 2 (5} =(.064)".
Without jitter,-;ssuming indepepdence, a2{%} = (.05)2.

- 2 -
At t = + TS, )X P8y = q.§927, z pkgk 0.828.

With jitter E{V} = 0.828
. 625} = (.087)2.
Without jitter, 02{5} = (:084)2.

These results are shown in Figure 2.8.
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2.2.3 Comments

Some comments or remarks concerning these results are in order. First
suppose that the results are compared fo that of averaging 100 independent
waveforms with jitter present {no correlation). For O = 3 ns, Ts=8.8 ns,

t=p + Ts’ and for an approximation to be subsequently discussed,

2 2 o’ 1
o~ (1 waveform with jitter) = {(corrected mean)” + El—(;g

= (.836)2

02 (average of 100 waveforms) = (.0836)2

which may be compared with the .087 results of the previous, more exact,
analysis. Also note that the approximation which assumes that Uj is fully
correlated over 10 pulses
2 02
average of ) = {(corrected mean) + i 1 _ ( 90)2
100 waveforms N N_TZ Te :
prf T s

(where N___ = 100, N, = 10)
_ pri T A
is seen to result in the same order of approximation. As expected, variance

02(

of the true process is midway .between two limiting cases of tracker signal
correlation. The term Ungiﬂe in the above equations représents a trans-
formation, by Taylor series expansion, of nanoseconds2 to ﬁoltsz. Note that
the formula for 02{5} is directly proportional to 1/n, i.e., the variance
-decreases as n, or the standar& deviation as 1/ yo. Also for r = 1, the

result reduces to
2= 2 2 1 2
O =L o - R )

This result is applicable when the autocorrelation function is zero.
The variance of ¥V increases slowly as r increases for N fixed (=100 say)

as tabulated below for N= mm = 100, t =y + Ts'

' T - n 02{-\-;}
1 } 100 .0070
2 . 50 - 10071
4 25 .0072
10 10 L0074
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This shows the results to be largely insensitive to the detailed averaging

properties of the tracking loop.

2.2.4 Sea State Resolution

Suppose that only significant waveheight is subject to change, then

2

T = \lo.zsa Hy /g

+ .362 ’J:2
5 P

= \fo,258 H%,s + 56.63

for Tp = 12.5 ns. Assume that Uj is given or has been measured to be 3 ns.
The following figure illustrates the effect of SWH on the total variance

of the process.

Lo A , H o= 1 fr
0.8413 -l g =9
- - .
-
//
- |
rd
.5 -
i
L~ e 4 >

+
Booowr,, WhT

ot
o

The difference .of two values {(for different Hl/3 values) is

2 2
T2 "To1 2 2
0.258 - T173,2 1/3, 1

-

2
sl
values obtained from the data or by squaring the values read from the cumula-

‘The difference Tiz - T is estimated by the difference in the estimated

tive distribution curves at 0.8413 and taking their difference. The values
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from the curve are denoted by T52 and T ys respectively. This difference =

is dependent on the H

1/3 values through the following approximation:
A2 a2 2
Tgg = Tgy = 0-238 (H1/3 2 " Miy3,1)
T-% = .0158 (Y, . - H,, )
‘52 sl 1/3,2 1/3,17°
and for H 1/3,1 = 6 ft, H1/3,2 =1, 3, 9, and 18 ft, the difference Ts2 - TSl
ranges from -0.56 to 4.61 ns. For H1/3’1 =9 ft and Hl/3,2 =1, 3, 6, and
18 feet, T52 - TSl varies from -1.29 to 3.91 ns. (See the following
= tabulation).
. AApprox.) {Approx.)
Biyg,p =68 T =Ty Bz =9 ft T - Ty
1-1113,2 =1 ~0.56 | H1/3’2 =1 - c=1,29
-0.43 3 -1.16
0.72 6 -0.72
18 4.61 ' 18 3.91

Now consider the precision of the estimated variances (standard
deviations) as read from the averaged waveform. The variance of the
o;dinate %(t) was obtained earlier as a function of n (no. of 0.1 second
intervals), Py > and 2" gor t=1u+ Ts’ Hl/3 = 9 ft, the est;mated variance
was given as 0.0076 volts™’

This variance in vdlts2 can be transformed to nanoseconds2 by using

“the Taylor series expansion of the Gaussian @(t 3 T ) (The inverse of
this was used earller to convert Jltter variance to a transformed jitter

variance in volts ). Given t = U + Ts and
=8t 3 T)) + (-t} @ (ty3 T)) + -*e

o{v} = N — Y

* TS v2Te
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Thus
oft} = T V2re of¥}

and using 02{5} = 0.0076, the variance of a 1 second average, the following

values are obtained for several averaging periods.

‘ Table 1
o{t}, V20{t} vs. Averaging Time (Seconds) at t = | + Ts’ v{t) = 0.8413

Averaging Time

{(Seconds) gigl v2a{t}
1 3.17 4.48
10 1.01 1.43
20 0.72 1.02
40 0.5 . 0.72
80 ' 0.36 0.51
120 0.29 ' 0.41

Assuming that the difference in two times has a standard deviation of V2 oft}
(since the timeé are assumed to be equal under the hypothesis of no difference)
then the above results need to be multiplied by Y2 = 1.414, see last column
of Table 1. Hence, for average waveform data collected over one second, the
standard deviation of the observed difference is estimated to be 4.48 ns.

In comparing data for H1/3 = 9 ft with that for H1/3 = 1 ft, the |
expected or average difference of T82 - TSl = 1.29 ns. The probability that
the hypothesis Tsl - TS2 will be rejected is given by the power of the test
(see [3], p. 229).

1.29 _ . i
A= 102 - 1.265,;fpwer = 24 for a= .05
i.e., for a levél of significance of ¢ = 0.05 (a 5% risk of stating that

the H .
1/3's '
Hl/B's will be indicated as different is approximately 0.24. If A = 2.8,

differ when in fact they do not differ), the probability that the

the power is 0.80, i.é&.

Tgp = Tgq = 2.8 (1.02) = 2.86,

a value exceeded only by comparing H1j3 =9 ft vs. Hl/3 = 18 feet.
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Similar results may be obtained using a chi-squared formulation. For
an averaging period of 10 seconds, first assume that 10 waveforms are
‘available,averaged over 1 second. From the above tabulation the-standard
deviation to be associated with a one-second average waveform is 4.48 ns.
In order to obtain uncertainty values for an 80% confidence bound, chi-

squared (Xz) values for 10 and 907% levels are used,‘i.e.,

02 - ncz 02 _ ncz
MAX 2 MIN 2
X 10z X 90z
_ 034.48)% _ 94.48)%
417 : 14.68
Sux = e.gs Oyry = 3-51s

where n = number of degrees of freedom. Using the previous equation

2

] 2
Tog = Ty = -0158 (Hy ;5 5 = Hyyg o)

with the above range of & values; as an example if one H1/3 value is taken
as 8 ft, we find the other to be 16.1 ft. As another example for H

. 1/3,1
3 ft, we find H = 14 ft. This means that the probability that a wave-

height observatigi’iill lie within these values is 80 percent.

The preceeding analysis has focused on the general statistical aspects
'of the mean waveform, variance, and waveheight estimation areas. This work
will next be used as a framework for deriving an approximate, closed form
solution to the waveheight resolution question. The initial problem formula-
tion assumed Gaussian functional fdggé for both the system waveshape and the
waveheight probability distribution function based on justifications given
in [4] and [5], and because this leads to analytical tractability. Without
the latter assumption, as must be the case with initial radar altimeter
waveform studies, a considerably more complex deconvolution approach is
‘needed to extract waveheight information. That is, for the Gaussian
assumption only a differemtiation is required to recover the combined system

waveshape and waveheight distribution. Except for the increase in process



23

variance which may result from differentiation, we know that the iTS point
on the mean waveform will directly map on the difﬁerentiated waveforms.
For this reason the following waveheight analysis considers only the average
received waveforms. For future reference, note that variances will_propa—
gate through differentiation (for a continuous-time analogy) as follows:
for the signal power spectrum, which at the output of the square-~law
detector is the convolution of the IF spectrum, S5(w), the differentiated
process variancé, ci, is '

o

o = d/luz S{w) dw.
P
' 0

For the noise spectrum (this analysis is assumed free of receiver noise) .
an identical form applies. Therefore, the differentiation operation:will
alter the signal-to~noise relationship only ta the extent that these spectra
differ (c.f., [1] for a computation of S{w)). For essentially band limited
processes, this factor is rather small.

To proceed, the previous analysis showed that the wavéform standard

deviation in volts could be transformed into time uncertainty o(t), as

) TS ¥2me (, 0.36’1‘S
oty ———, o(v) =
Yt vt

t in seconds.

Also as previously discussed, the approximate total time uncertainty
is due to the uncorrelated variance of TS along with Uj; the waveform
statistics and the tracking jitter random sources. Penoting the combined
one-sigma variance as g(t), i )

) (0.36 ) Uzj
0_(t) ~ +

t 10t°

Using the previously .defined value for TS,

_ 7 7
T, = .602 /o2 Hy g + Tps
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and using a differential of TS to convert the time uncértainty o(t) into

an H

ncertaint ives

428 Hl/3 AHl/3

s™ ‘/ 2 2
712 Hy o+ T

AT

Equating (AT)2 with Gz(t) and substituting for TS gives a significant wave-

height uncertainty Ty of
1/3
‘[ 2 2.2 2 2 2
- V. . + . . (. + T
. » 256(.712 H1/3 Tp) + 5460J( 712 Hl/3 p)
” o
1/3 H1/3/E

This gives a first order solution to the one-sigma uncertainty in wave-
height resolution. In accordance with previous work [6], we adopt an 80
percent confidence bound (for a Gaussian proéess this bound is approximately

1.3g). Therefore

2 2

2 2,2 2
£ T+ .9230% (712 Hy + T))

‘K433(.712 H
resolution = 1/3

H1/3 . u JE
(80% confidence bound) 1/3 -

The results obtained using the above approximate formulation may be
compared to the two previously given results and seen to be in éatisfactory
agreement. Graphical fesults, obtained through use of this last equariom,
were discussed at the beginning of this section.

sart
o
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3.0 SPATIAL FILTER EFFECT AND OPTIMAL FILTER FOR GEOID DATA PROCESSING

3.1 Geoidal Data Processing Results

The purpose of this section is to present derivations and results relating
to optimum data processing methods and required data rates for @EO0S-C altitude
information. The first part of this section addresses the_effécts of (1) geoidal
power spectral density, (2) spatial filter function, and (3) altimeter measure-
ment ranaom error on data processing characteristics. Weighting functions are
derived for both undulation and slope filtering based on geoidal spectral data
extracted from the Skylab altimeter observations. The results are optimal in
an additive Gaussian noise, minimum-mean-square error sense and largely represent
an extension of the earlier work of Cohen and Zondek [1]. The second part of
this section gives a detailed analysis of the spatial filter effect which results
from the finite area illuminated by the altimeter. We assume that the altimeter
spatial filter effect averages over all significant waveheight spectral com-
ponents.

Results of the analyses argue‘thét the GEOS-C altimetef will be capable of
measuring geoidal components to a short wavelength cutoff in the neighborhood
of 20-40 km for geographic regions containing pronounced sho}t—wavelength
features. For a satellite ground-track velocity of ~7 km/sec, this corresponds
to a Nyquist frequency of f0.3 Hz. Taking this Nyquist rate and the time-expanse
of the derived weighting functions as a measure of the geoidal information rate
of the altimeter, the GEOS-C 10 sample/second data base is considered to be
wore than adequate. .

Figure 3.1 displays a power-spectral-density (PSD) plot for the Puerto
Rican Trench region which was computed using fast Fourier Transform methods
and a Hanning type convolutional window. The data base comprised S1-2, Pass 4,
Mode 5 with 100 and 130 nanoseéond pulsewidths (pulse compression was not
functioning during SL-2). The Puerto.Rican Trench data was used since we desired
to obtain PSD results for an anomalous region, which should contain more energy
in short-wavelength components than anomaly-free regions. The PSD so obtained,
and data processing results derived therefrom, should represent the best
opportunity for the altimeier to obtain information relating to short wavelength
un@ulations and should ;ield an approximate upper bound on data processing

requirements.
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Referring to Figure 3.1, the dashed line cofrespdﬁds t6 the deﬁs;ty léééiw
for which a 5 Hz rectangular bandwidth, white noise spectrum would yield an ms
level equal to 0.5 meters. Since the 5-193 tracker has appr0ximate1§ a 3.3 Hz
equivalent noise bandwidth, this leével consititutes an approximation to known
GEOS-C intensive~mode system characteristics. The noise level shown in the
calculated spectrum represents the Skylab altimeter noise level (1-2 meters rms).
We will subsequently verify that the spatial filter function corresponds to-
considerably shorter wavelengths (less than 10 km) and that the calculated PSD
is not contaminated by the altimeter footprint effect.

Note that the observed spectrum represents an asfmptotic behavior which in
the frequency parameter (f) is approximately f-a. As discussed in [2], Kaula's
-model of one-dimensional spectral behavior behaves as f-3.

Since observable geoidal components are of much longer wavelengths than
spatial filter effects, we interpret the data in Figure 3.1 as a cut through a
two~dimensional E?zctrum. In wave-number space (kx,ky) a directional spectrum
S(kx’ky) with a k = behavior will yield a one-dimensional asymptotic behavior
of k~3 (due to integration over the angular coordinate of the polar coordinate
set). Therefore, we feel that the observed spectrum depicts the proper theo-
retical behavior.

The optimization technique we use i$ the Wiener-Hopf formulation, which
" for the correlation functions R(-) of signal s and observation y, gives the

optimum impulse response ho(t) as the solution to the integral equation [3]

" eo

Rsy(ﬁn) = [ ho(u)Ry('r—u)du T>0.

<

g
-

For non-real time processing, an estimate of a value at time t can be based on
both past and future values. Therefore, the proper lower limit on the integral
is ~» and the integral equation becomes a convolution form which is readily

solved by transform theory. * For our purposes the form of the solution is [3]

-

‘ ) _ S{w)
BO) = 560w @)

where S{w) is the geoid undulation power spectrum and N(w) is the additive noise

spectrum. Since the altitude tracker has a noise equivalent bandwidth of ~5 Hz

A b e v

T i i A

R s i
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and a random error standard deviation of ~0.5 m, N(+) may be represented as a
white noise spectrum with a density of (ﬂ5)2m2/5 Hz = .05 m2/Hz or 7.96 x 10—3
mglradian. Using the break-point approximation (the asymptotes of which are

shown in Figure 3.1) to S{w) as .

71.66 + 6.554 x 102

w-.05120% + 6.554 x 10~

S{w) = 7

the optimum transfer function is foumd to be

n L 5.9 ~
Ho(w) =

mh—.0512w2 + 5.9006

. This function is also shown in Figure 3.1. Note that the asymptote is twice as
steep as the spectral decay. At the intersection of the break-point spectral
approximation and the GEOS-C noise level (which occurs at ~22 km), HOGH)
introduces an attenuation of ~12 dB. The 3 dB attenuation point occurs at ~40
k.

Figure 3.2 shows the spatial filter responée~function for the GEQS-C system,
which is derived in section 3.2. Note that the solution {Ho(w)] given above
effectively truncates geoidal data at considerably longer wavelengths than does -
the spatial filter effect (its 3 dB point occurs at ~10 km). Had this not been
the case, a considerably more involved Wiener-Hopf form would have been required.

The optimal filter HOGD) has been inverse Fourier transformed through use
of contour integration, and the normalized impulse response found to be

() = e 0 8735 (os 1.289¢ + 0.6792 sin 1.289t) for t>0.

rarr
Knowing that the optimal geodetic slope filter is the derivative of the

optimum undulation filter, the impulse response for slope estimatiom is

g—%f—l = -0.8755 ¢ 0-87%7% (cos 1.289t + .6792 sin 1.289t)
+ e 08735 8755 cos 1.289t - 1.289 sin 1.289t) for t>0.

The undulation filter impulse response will be an even function of time, whereas

the slope filter impulse response will be an odd function [1]. Both response
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functions are graphed in Figure 3.3 and tabulated values are given in Appendix
A. This figure shows the overall characteristics of the two filters; for
digital computer implementation the response functions must be truncated and
properly re-normalized. To insure that the long wavelength structure is |
invariant under discrete-time filtering, the truncated convolution weighting
coefficients should sum to unity. Also, in application of this form of
filtering, the geoid power-spectral density of the actual area of interesf

should be investigated and the mean square error properties, given by

oo

.
27

-0

e Ho(w)N(w)dm,

should be compared with weighting functions which are computationally mofte
efficient (e.g., rectangular or arithmeti¢ moving average). It is iﬁteresting
to note that the time expanse of an ideal rectangular impulse response function
which has a sin x/x frequency domain response that matches Ho(w) at the 3 dB
point, corresponds to an averaging period or impulse response width of 2.22
seconds. The ho(t) form shown in Figure 3.3 has a width at the e_l points of

~2 seconds.

'-'_'_..
-
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3.2 SPATIAL FILTER EFFECT

3.2.1 Background Discussion

The term spatial filtering effect as applied to radar altimetry denotes
the ideal, i.e., noise~-free, capability of the altimeter to resolve surface
features. Spatial filtering is inherent in an altimeter system because of the
non-zero width of the system point-target response. Thus, even if we consider
the measurement process to be noise-free, the above factor limits the ability
of the system to "map" small scale surface features.

Typically, one calculates the radar footprint radius R for pulse-length

limited geometries from the relatienship
R = \/heT

where h is the satellite altitude, ¢ 1s the speed of light, and T is the radar
pulse length. It is then assumed that the footprint diameter (2R} approximates
the minimum surface wavelength which the altimeter can measure, and that the
altimeter response is essentially flat for surface wavelengths greater than

2R and zero for wgvelengths less than 2R. In essence then, the altimeter is
treated as an ideal (rectangular) low-pass filter whose cut-off frequency is
determined by the transmitted pulse length. While such a characterization of
the altimeter may be sufficient for "order-of-magnitude" calculations, it is
inadequate for more precise system modeling. The problem of specifying altitude
sampling rates and optimal data filtering require that the asymptotic (high

. frequency) behavior of the altimeter spatial filter characteristics be investi-
gated. _

In a previous work [4}, approximate formulas were obtained for determining
the effect of a one-dimensional, sinusoidal, corrugated surface on the mean
return waveform. Upon further analysig, we have determined that the approxi-
mations used to obtain those formulas are not always valid. In this report we
correct this formulation for the scattering process to obtain the effects of
the surface on the mean return waveforms. For the GEOS-C altitude, pulse width
and split-gate tracking configuration we obtain results which illustrate the
gsensitivity of the'system to surface undulation wavelengths.

For the purposes of this report we will represent the geoldal surface
undulation as a single sinusoid of small amplitude and very low frequency. In
other words we will assume that on a very localized basis the geoidal perturba-

tions of the mean flat sea may be represented as a sinusoid of relatively small
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amplitude and low frequency. The analysis could be extended to the case of two
or more surface harmonics; however, the analysis and computations becone
prohibitively tedious. '

_ The geometry of the problem is shown in Figure 3.4 along with a definition
of pertinent terms. We assume thatlthe surface undulations vary in one
direction only. That is, the deterministic component of the surface height may

be represented as
z = 3591n(k5pcos¢ - as)
where a_ is the peak amplitude of the undulatiom, ks = Zﬂ/ls is the wave—number,

and a is the "phase" of the surface directly beneath the altimeter. TFor the

time being, the altimeter will be considered to be fixed relative to the surface.

3.2.2 Determination of the Mean Return Waveform

The mean return waveform is given by the following expression (5]

Pr(t) = A da o))

T

2 / P, (t- 256 (@,0)0° (©,0)

G4

SCATTERING
AREA

where t is the time relative to the time of transmission and dA is the elemental
scattering area on the ocean surface. For purposes of this analysis, we consider
the altimeter antenna to be nadir pointed, thus w = ¢ and @ = ¢. We also will

only consider the case of pulse width limited geometries and very short pulses,

o Ach)cs“ P (t- %—)
Pr(t) = dA {2)

(4ﬁ)§f r4

i.e.

-where Go is the boresight gain of the antenna and ¢° is the surface scattering
cross-section per umnit scattgring surface at 0° angle of incidence. If we

define r, as the distance from the altimeter to the point on the z = o surface
which is at the same réaial distance p as the intersection point of r with the

true mean surface, then from Figure 3.5

4
S

U S
°  Virm)?
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ELEMENTAL SCATTERING
. / - AREA
- - Ay THE SUBSATELLITE OR NADIR POINT IS THE
b ORIGIN OF THE x,y,z OR §,¢.2 COORDINATE
BORESIGHT P » SYSTEMS.
POINT _f‘_ £ = ANTENNA POINTING ANGLE, OFF NADIR.
L .
A 0 = ANGULAR LOCATION OF SCATTERING
' M AREA RELATIVE TO BORESIGHT AXIS.
¢ = POLAR ANGULAR LOCATION OF BORE-
o P 1 SIGHT POINT RELATIVE TO x-AXIS.
@ / B X ¢ = POLAR ANGULAR LOCATION OF
7/ ! : SCATTERING AREA RELATIVE TO x-AXIS.
7 = POLAR RADIAL LOCATION OF
SCATTERING AREA.
] w = PROJECTION ON z = 0 PLANE OF THE
LA ~ ANTENNA PATTERN'S AZIMUTHAL
: ANGLE.
ASSUME THAT, OVER A SUBSATELLITE AREA '
SOMEWHAT LARGER THAN THE RADAR "FOOTPRINT,” , ke = 2n/ds.
THE SURFACE WAVE NUMBER K IS ke IN MAGNITUDE, h = SATELLITE ALTITUDE.
IS IN THE x-DIRECTION, AND HAS A PHASE ANGLE a4 r o DISTANCE FROM SCATTERING AREA TO
RELATIVE TO x = 0. THE AMPLITUDE OF k; 1S dg, 8O SATELUITE.
THE SURFACE ELEVATION AT ANY POINT IS GIVEN :
BY z,, ros WY1+ (Em)2 - 220

g = a, sin{k Deosd - ag)

Fig. 3.4 Satellite-Ocean Surface Geometry and Summary of Notation.
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Fig. 3.5 Diagram Illustrating the Relationship Between the
Distance from the Altimeter to the True Surface (r)
and to the Mean Flat Surface (ro).
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where r, = ¥F +h~ and z_ = 3351n(kspcos¢—as), thus

2r 2z
1
-2 24 %

¢ T Vi@’

where ¢ is the speed of light. For p<<h,

Equation (2) becomes

2z
2?60 /P (:-%——Ez—-+—-i)

P_(t) = —3 Be©—da.
(4m) T,
-4 -4 . , 2h
where we have approximated the r factor bt T, - Substituting T = t -~ —¢
and approximating dA by pdpd$, i.e., we integrate over the z = 0 plane but

retain the zg dependence in Pt’ yields

ﬁz‘ 22

L e [Pl Tt )
P (T+5) = A Pdpde.
(4ﬂ) r,

We now take the transmitted pulse to be Gaussian, 1.e.,

_ 2
. 2
20
.Pt(t) = Ppe S
then (4) becomes e
) 2 2z 2
l G o P ~ he c —
2h Pt
Pr(‘t+—c)-— ee@zz
n (4m 477 /m%)
9
Substituting ¥ = %F in (5) yields

w 27

2G20°P ¢ .
2h
P_(1+ —c) /fexp —(Q—T-Zz /c) }dpd¢

2h (Aﬂ)
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where we have ignored the factor (1+cp/h)_2 since it has little effect relative

to the Gaussian dependence on p. With the change of variables in P, zg becomes

z, = a sin (ks\/hcp cosd — Of.s) _

After some trigonometric manipulations, the exponent inside the integral in

. {6) becomes

4a
[p-T-ZzS/'C}Z = (p—'r)2 - "—c—s'(p—'r)sin(ks\/h(:p cosd - as)

2::12

+ TS [1-cos (st Vhep coscb. - 2&5)] (7.)

. We then use the following identities [6] to remove the last two factors from

the exponent:

2a
exp %:;g—(p-'r)sin(scosd) - as) ‘t = Io(x)

-l- 2 Z ("1)111 IZm—l—l(x) sin{(2m+l) (Bcos@-—as)}
m=0

+ 2 Z D™ I, (%) cos{Zm(Bcos¢—ax)} ' (8)
o=1 ' '
and
2 .
‘ s - 3s ) - 85,2
expy - 55 * 75 cos(2Bcosd ~ 20&5)‘ = exp —(E-E) Io(y)
c ¢’ e
+ 2 Z In(y) cos }Zn(Bcosd) -0 s) } : . (9
o=l
where -
Y : B = k,Vhep
ZaS ag
x=—{p-1) y-=

cg cU
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and the In(-)' are Bessel functions of the second kind and ‘order n. Taking the
product of (8) and -(9), expanding the trigonometric in series of Bessel

functions of the first kind and integrating term by term yields the following:

2T __'(e—'rzz _ (f_g_)z :

1 2z5 2 2027 ca
eXPj- ~=zlp-1- /7] s d$ = 27 e 1,0 ()

. 20 .
. o
+ ZID(X) E : In(y)Jo(ZnB)cos(Enas)
n=1
. -2 ZZ (D)™ Ty, (O L8, [Jo([2m+1-2n]B)sin([12m+1-2n]as)

=0 n=o

+ 3_([2m+142n]8) sin([2m142n] oas)]

+ 2 Z 2 (—l)]Jl IZm(x)In(y)(Sn,'o l—JO([Zm—Zn] B)cos([Zm—Zn]aS)

=1 n=o

+ Jo([2m+2n])B)cos([2m+2n]a_s):l
where-

1/2 n

It
o)

1 n=21,2,+"

. Rearranging and changing the indices on the various terms in the above leads
to the following result;

2n _eo? 282
1 228 2 262 co
/ exp ; - —2[0—1'- —c—'] d = 27me
.20

0

Y L@, sm,o%'%([m—zn]s)

=6 n=0
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[{1+(—1)m}cosggcos([m—Zn]as) - {l-(—l)m}cos(mrl)géin([m—Zn]as?J
+ J_ ([m+2n]B) [{1+(-1)m}cosgg£os([m+2n]?s)
-[1- (-1)m]cors[ (m—l)'g] Sin([m-i-Zn]OLs)] ‘ | (10)

Equation (10} is the result of integrating (6) with respect to the ¢—variable;
it is exact in that no approximations were employed to cobtain (10) from (6).
The right hand side of (10) may be simplified considerably when

2
a

- s
y=7
C

<< 1,

~or the pulse length is much larger than the peak amplitude of the sinusoidal

undulation. Under this condition we note that

n

Lo = o
2°T(n+1)

»

and we only need to take the first two terms in the In gseries. Thus, the mean

return waveform is given by

22, 3.2 oL p-r)?
oh, . A G0 Ppme =() 20%
Pr(‘H- =) = '—“—?—5-— e e
(4m)"h
. o
~ 2 i
I :;E{Q—T] S0 § [-1) #1lcos— (I (nk _+v/hep)eos (me )
m=0
1 as 2' -
+ E{Ea) {JD([mPZ]kS\/Ecp)cos([meZ]uS)

+ qot[m+2]ks\/hdp)cos([m+2]as)}] —[1—(_1)m]cosiﬂglll

a
.[ﬁo(mks\fhcp)sin me + %{Egiz {Jo([m-Z]kS\/hcp)sin([m—Z]as)




+ Jo([m+2]ks\/hcp)sin([mﬁQ}aS)}]}Qp.
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Q)

Equation (11) represents the mean return waveform scattered from a unidirectional

sinusoidal surface under the following assumptions:

(a) pulsewidth limited geometry, and

{(b) the peak amplitude of the surface undulation is small cdmpared

_ a
to the pulsewidth, i.e., E§'<< C.

Expanding the first few terms of (11) yields

P
T

2h, _
(T +-“zﬁ =

a
. _[1+ (}%) 2

T
4y 3n3

2.2, A5
A GOG P, T7C (co)

1 2 '
o,
| e 310 (c—z[p-'f])

o

a

+]

2a

S
J_(2k, hcp}cos_2usl—2 Iy pte-h

g

a _
. 1, s.2 . .
‘[%o(ks hcp)51nas + E(EE) {-Jo(ks\’hcp)51nus + J0(3kS hep)sin BGSE}

2a

' a
s 1,852
—ZIZ(EEE[D—T])[?O(zks hep)eos 2ag + 5(55) ;l

2

cg

a
s .
+ Jo(éks hep)cos 4&%H+ 213(d—§[p-rl)[%o(3ks hep)sin 3&3

1 .
+-§{EE) {Jo(ks hep)sin o + JO(SkS\/hcp)51n Sus}]

23,2

+--+ dp. (12)

Of all the terms appearing in (12), only the first can be approximately

integrated in closed form. For

Thus,

[+4]

/.

s}

2
- —lg(p—T)
20

-

2h, .
Pr(T + - Yy o=

2a

cQ

2.2 4
A COU PTTTC 1/2—"

C

1 (—5lo-t1)dp =

35 <<'G, as shown in Appendix B,

&myn3

2

a
¥2 i _5)2 a_?
——%ﬂg-{erf( L3 Y + e co Io( 252)}

g V2 ‘o
2
a
__s
o 22 T 8g
e erf( p_) + Io( 5 2)
g /2 c g
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a 2w

—(EE)'f ;;E(p—ﬂ ZaS a 2 o
+ e e Io(;;f[p—T])(EE? JO(ZkS Yhep)cos 2&8
o

2a 1 85,2
- 21 ( [D-T]){J (k Vﬁcp)sinas + -Q-(E) [—.Jn(kS _v‘ﬁcp}sinas

' 2a
+J0(3ks vhep)sin 3&3]} 21 ( [p—T]){J (Zk Yhcp)cos 20L

a

1 s 2 235 .
+ = (—) [l + Jo(lnks vhep)eos 4&9]} +213 (——i—[p—'t]){

2%co o]

2 .
1,25 .
J°(3ks vhep)sin SOLS + E(a;) [Jo(ks v‘Ecp)s:LnOts

+J°(5ks /Ecp)sin5a:|}+--- dp {13)
and since ) '
a 2
"o £(——) o az ) f(——) + 1 (14)
er + I ® er + 1,
G V2 2 2 o V2

the first square bracketed term in (13) is essentially the flat-sea mean
scattered return. The term in (13) involving Iz(zﬁ[p—'r]) which is independent
of ks is a higher order correction to (14} which may be ignored when ag/e<<0.
The remaining terms in (13) depend on ks and thus exhibit the dependence of

the mean return waveform on the surface wave number. Provided ks vhe is not

too large, the dominant term inside th€ integral in (13) is

2]

- —le-tl" 5,
~2sina f e 20 11(—;%[;3—-:])30(1:8 vhep)dp.
N c
The exact value of k /he for which the above term mo longer dominates the kg
dependent terms in (13) is not analytically obtainable, but may be readily
determined by numerical integration of (13).
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For a flat sea, the mean return waveform is a convoiution of the five
following factors:

(a) transmitted waveform,

(b) flat sea impulse response,

{c) radar observed waveheight distribution

(d) radar receiver impulse response, and

{e) tracker loop time positioning jitter.
However, for the non-flat sea surface such as we are dealing with in this
example, it is not possible to deai with an "undulating sea impulse response"
or the analog of (b). That is, if we found the response of the undulating
surface to an impulse function, the response to another pulse shape would not
be equal to a simple convolution. This can be seen by referring to equation
(1). The convolution property arises because for a mean flat sea, dA=rdrd¢
and the ¢-integration can be accomplished independent of r and the argument
of P, remaing as the difference t-2r/c. For the undulating sea-dA%rdrd¢ and
r is a function of both ¢ and P; thus, after performing the ¢-integration in
(1) the argument of P_ will not necessarily depend on the difference t-2r/c.
For this reason, the concept of a "undulating sea impulse respomnse’ has no
meaning. In fact, the concept of linear scatter theory or the entire multiple
convolution model of the pfocéss may be'questionable; for conditiong under wﬁich
geoidal and ocean surface wave lengths are of comparable length. However, this
topic is much beyond the scope of this investigation. 7

For the purposes of this report, we will aésume the following: the system
point target response* of the altimeter is-Gaussian with a 3dB pulsewidth of
T ; the radar cbserved waveheight probability density function is Gaussian with
an rms wavehéeight equal to Gss'and the tracker leoop time positioning jitter is a
_continuous Gaussian process with standard deviation equal to Gj. If we assume
that the significant waveheight of the waves (Hl ) is equal to four times the
rms wavehelight, the pulse width parameter ¢ is given by

5 2 2 2
o : J(.soa H]13) + (.602 T )" + 0

where Hh3 has units of feet and Tp and Uj have units of nanoseconds. For the

GEOS-C altimeter system oj # 3 ns. For this study we have chosen a composite

*The point target response of the system is the convolution of (a) and {(d), above.
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g of 8.16 ns. Table I shows the combinations of Tp and H%B which satisfy the -
above equation with ¢ = 8.16 ns and Gj = 3 ns. If the system point target

response pulsewidth is 12.5 ns then H%@ = 1.98 feet which is a small sea.

3.2.3 Determination of the Split-Gate Tracker Response

Equation (13) represents the mean return waveform as influenced by a
random scattering surface having a mean sinusoidal profile. Im order to
determine how the altimeter tracker responds to this return waveform, we must
apply the split-gate tracking algorithm to the return. We first normalize

P_(T + gbi such as would be done by the receiver AGC, i.e.,
r c .

Pr(T + 2h/e)

P (1) = T
where
szzP o°me
r=—=2%>
(41[)3h3

We now integrate over the ramp part* of the normalized return to form the

function Hy(k_,a_ ,o ) where T /2

HR(ks,as.Gs)=f§r(T)dT, - (15)
—Tp/Z

TABLE T

Combinations of pulsewidth and significant waveheight which yield ¢ = 8.16 ns

with Uj = 3 ns. -
T ' -
p ‘ ‘ H1/3
Pulsewidth (us) Significant Waveheipght (feet)
8 o - 11.55
10 9.1
12.5 1.98

*For GEOS-C the tracking gates have the same width as the system point target
response, i.e., Tp.
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while the plateau gate function Hp(ks,as,us) is formed by integrating 5;(T)
over the same time interval but starting at a time well into the plateau
region of the mean return, i.e.,

T+Tp/2

Hp(ks,as,us)=fPr(T)dT, (16)
T-T
where T >> Tp. P’?

When a_ = o, the normalized mean return becomes

J1m T () = L2 [ers 1),
8. : o v2Z
thus
T
Hp(kg,ag = 0,0) = V2T 0 (5) (a7
and
Hp(ks,as = 0,0 ) = V2% O T, (18)
Comparing (17) aﬁd (18) we see that
' W = =1 -
HR(ks’as = o,as) =3 Hp(ks,as = o,as) QA9

and, thus, for the mean flat sea, the tracking law is satisfied when the
intégrated ramp and pleateau gate values are defined as in (15) and (16).

~ In the actual system the altitude tracker develops an error signal for
each received pulse, each of which is an ensemble member of the mean power
versus time. relationship of the backscattered signal. Averaging characteristics
of the closed-loop system thus provide L a measure of mean signal properties.
Since we can only.-calculate signal s;atistics ~ not individual ensemble members -
it is necessary to conceptually reverse the order of the altitude measurement
and averaging processes. This amounts to an ergodic assumptioun, which previous
Monte Carlo simulation studies have. shown to apply. Also, since the altimeter
uses a square—law‘detéé£or, the averaged video signal should correspond to the
calculated 5;(t) for the noise-free case. _

We further assume that the mean return waveform as a‘function of ks does

not differ appreciably from a shifted replica of the mean flat sea return and,
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also, that Zas/c << g, i.e., the maximum possible two-way time shift due to
the sinusoidal mean surface is small compared to a pulse length. Under these
assumptions we can mathematically replace the closed-loop trackiﬁg process by

a fixed discriminator relatiomship, i.e.,

- 1
e, = B[HR(ks,as,q; - 5 Hpcks,as,as)] (20)

where €, is the time position error relative to 2h/c and we define B such
that when ks =0 (XS = ) and ag = m/2 or the surface is flat but a_ meters
below the g = 0 sea surface then £ _ = ZaS/c.

To obtain (20) we note first of all that if T is sufficiently large (as

defined in equation (16)) then
Hp(ks,as,as) = Hp(ks,as=0,as)'= v2r o TP,

or changes in the location of the leading edge of the pulse as a function of

ks have no effect on the plateau gate integrated value. Thus, (20) reduces to

-~ , o]
et = B[éR(kS,as,ag) - 7 o] 1PJ. |

When ks o and;as = 71f2, we determine B-so:thét.et.=.2aslc,.i.e.,

2ac/c

B:
%R(ks=o,as,as=ﬂ/2) - “ﬁgizo Tp]

When ks = o, the normalized mean return waveform may readily be cobtained from

equation {(6) and

set”
!

o 2a
o : T + == sin(-o_)
1im Pr(T + 2%) = —zgig-l + erf( < g )]
k>0 o V2

Integrating lim 5;(T + 3%) between the limits of -TPIZ and +Tp/2 and setting
0 -
o = /2, we find
2a 2a

. T T
_ _ _ o /27 p_ s 1 . p_ s
HR(kS‘-‘O,as,as"TTIZ) = 2 {Tp+( 2 c )erf (c /_2_|. 2 - c ])
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T
- (—§-+Zz§")erf( 1 [Eg-+?—§§])+9—@e 20" 2
ov2 T
| 1 EE_ 2a_ 2 | |
o —-2—03(2+—E—) } (21)
-2

Substituting ¢ = 8.16 us, Tp = 12.5 ns and a, = 0.4 meter in the above yields

' vor o
HR(kS=o,aS,aS=ﬂ/2) —'——Ef——-Tp = -29.898,
and
g = -29.898.

The time shift of the tracking loop'is therefore given by

- (ZaS/C) Vo
€ T  29.898 {HR(ks’as’“s)" 2 °Tp} (22)

where HR(kS,aS,aS) is given by (15) with 5;(T) computed from (13).

The height of a point on the surface directly beneath the altimeter is

given by -
hA = h-zS
or
hA = h-assin(ksﬁbosé—as) (23)

where h is the height of the altimetexr above the mean flat sea. The phase o
can be put into a one to one correspondence with the spacecraft velocity in the

x~direction by the following:

-

where Vx is the spacecraft velocity in the x-direction and t is spacecraft
time. Setting D=0 in (23), results in the following altitude profile encountered

by, the altimeter as it moves with constant velocity in the x-direction:

. hA =h + assinas : (24)
or

hA = h + assin(ksvxt)_
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From (24), we see that the time displacement, €., of the tracker should be
proportional to the sine of the surface phase angle. As noted previously, for
relatively small values of ks JEE such will be the case; however, when k. vhe
becomes large, the dependence of €, on o is no longer s%nusoidal.

To demonstrate the sinuscidal behavior, we return to equation (13) and
compute the AGC'd mean return in the limit of k§+o. The details of the

integrations are given in Appendix B and

’ : 2
2h /2T O T /2T s T
lim P (T + =) ® erf(——) + 1+ —= cos 20_{1 + erf( )
k 570 2 { o /2 } 2 czc : s{ g ,/2_}
2
...(_.T_)
a. qT G2 ] 1 g 2 ]
- 2(--;) [l - ;m/z_{l—e } sino_ + —z-(c—d) {_—smons
. 2
2 ‘ -(—)
a” V2m :
+sin3a}]— = [1+ 1{l+erf(T y - 4T _ o ‘/QE}:I
s 2c o o V2 avZ YT
a_ 2
[cos 2a + —{—nﬁ (14+cos 40 )] oo
and

k 570 Tz CZU

T
P
2 2
- . — a
_[ 1im Pr('r+-2%)d'r '2“ c’(1:)+ v 2m —— cos 20 )
T .
P
2

. ag 2
- 2 (—-) (T )[sma + -(—~) { sino + sin 30;3}]

-

-—-——é—(T)[cos 20 + (-——) (1+cos 4o )] oo,
P s
2c70

therefore the tracker ’i00p time positioning becomes

‘ a
s
38 € % T 29,598 cos 2o = 2(7) [Si““s

2

a

lin e o . (23a70) Tp{ /75 2s
S
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. 32 Y2T
1.2%s 2 . . } -2 [cos 20
+ -Z—(E) {—s:.n_as + sin 30LS 2‘;20 s

| 1,2 2 | Q
+ E'(E'E) {1 + cos 40&5)] Feeen.

|

Substituting o = 8.16 ns, a_ = 0.4 meter yields

(2a_/c)
ki—*ig € = = 39,898 TP {.273 COS-ZCLSZ - 2.67[Sinas + (.013) (—smas
+ sin 30)] - .273[cos 2a  + (.013) (1 + cos 4o)] + } (25)
or
Zas
kl’ig € % (1.11) (T)51n0ts. {26)

The factor (1.11) is due to the fact that the integration of (13) as shown in
Appendix B is approximate while the denominator in (25), i.e., 29.898, was
exact (see equation (21)). The important point to note in (26} is that the
tracker lt_)op timé positioning is proportional to sin Ols.

When ks is not equal to zero, it is not an easy task to demonstrate the

dependence of £, on sin O« Because of the complexity of the integrand in

t
(13), it is not possible to analytically obtain the value of ks for which the
terms multiplying sinu.s are dominant. That is, we would like to find the value

of k_ such that for k_ < k
8 5 - S

. a 2
T o(r+2hy , 200 e-(ﬁ) f(T)-I-I(ai)
LA e’ 2 er G V2 o CZU.’Z
i 2
a 2 " _(p-1)
-(‘i) ZaS —_ 1 as 2 20’2
-2 s'.inocS e fIl.(;-;-z-[p—r])Jo(ks ,/hcp)I:l - -2-(-55) ]e dp (27)

[0 ]
and for £, we then have

- a2 lp

(2a/c) LD 2 2a
R ETSEE‘ ;2 sina e o f f Il(j[p—‘r])lo(ks /hep)

=T o
P
2
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o (D"T)Z

L ! A R
. [1 S ya 3% :|e 20 dpd‘r} . (28)

2¢O
Equation (28) can be rewritten in the following form:

Zas ‘ .
€, = (——c )A(ks)sinots

where A(ks) has a maximum value of one when kS = p and it determines the’

dependence of £€_ on ks' Because of the Jo function in (28), A(ks) will go to

zero for certai; values of ks and as ks increases beyond this value, A(ks)

will change sign. A change in the sign of A(ks) indicates that while the
altimeter may be profiling the gross variation of the surface, i.e., sin as’
properly, it is interpreting peaks and valleys in the surface as valleys and
peaks, respectively. With the limited amount of computation that we have
accomplished on this problem, we have found that (28) is a reasonable approxi-
mation to (22) for ks slightly less than that value for which A(ks) goes to
zero for the second time. TFor values of ks beyond this pqint, the variation of
€, with surface phase is no longer sinusoidal since other Oy dependent terms in
(13) become dominant. However, for spatial wave lengths at which (28) becomes
invalid, an absurd noise level for altimeter observations would be required

to permit compensation of spatial filter effects.

3.2.4 Results for GEQS-C Intensive Mode of Operation

Much of the preceding material has been concerned with the spatial filter
problem in general. In particular we have attempted to show how the sinusoidal
surface affects the mean return waveform and how this effect may be translated
into the profiling capability of the altimeter's tracking loop. We have also
pointed out some of the simplifying asgumptions that can be made in dealing
with the rather complicated form of'ELe mean return waveform. We will now
address the GEQ5-C problem; As before we will assume a 3 4B pulse width (Tp)
of 12.5 ns for the system point target response, a significant waveheight of
1.98 feet and a tracking lobp jitter standard deviation of 3 ns. The orbiting
altitude of the altimeter will be taken as 880 km, while both the ramp and
plateau tracking gates will be assumed to be 12.5 ns wide. The system parameters
assumed represent our present knowledge of the expected final configuration of

GE0S-C in the Intensive Mode while the altitude and wavéheight parameters are

taken to be nominal operating conditions.
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For the parameters listed above, we have computed the mean return waveform
byznumerically integrating equation (12) including all terms out to IG(ZaS[DﬂT]/
¢g“). All computations were for a peak surface amplitude of 0.4 m. The
resulting waveforms were integrated over the time interval --Ig.s T X Eg-and
the output of the tracking loop time discriminator was computed using (22).

A plqt of Eps normalized by 2ag/c and as a function of surface wave number and
wavelength is shown in Figure 3.6. This plot illustrates the extent to which
the profiling ability of the altimeter degrades as the wavelength of the surface
undulation decreases. Due to sea-state and jitter effects, the equivalent 3 dB
pulse width of the system increases from 12.5 ns to 13.55 ns. The approximate

cutoff wavelength of such a system is given by

lc = 2\/hc(13.55)

or Ac = 3.78 km. As shown in Figure 3.6, Ac is slightly smaller than the first
zero in € - As As decreases beyond the point for which Et = 0, St changes sign.
That is, the altimeter indicates the presence of a valley in the surface when

it is actually measuring a peak. Near the second zero of Eps the altimeter
profiling capability entirely breaks down because the altimeter no longer sees
a ginusoidal surface. Thus, for As < 2 km thg éltimeter is no longer profiling
the surface. Such an observation can not be made by just examining Figure 3.63
this statement requires that the variationm of o with surface phase, O be
examined and compared with the sinas. Thus, the plot in Figure 3.6 should be
"eutoff" at ls = 2 km.

While Figure 3.6 is the desired output of this study, it is also .interesting
to examine how the mean return varies as a function of surface wavelength. The
solid line in Figure 3.7 is that portion of the normalized return for a mean
flat sea surface, i.e., a = 0. Theggashed curve for As = 31.4 km is essentially
a shifted replica.-of the flat sea curve. It is shifted to the right (later in
time) because the nadir point on the surface is a "valley" in the sinusoidal
mean surface, i.e., assin(—gs) = -a. As the wavelength of the undulating
surface decreases, the mean return shifts closer to the flat sea curve and also
begins to change shapéﬁ' The curve in Figure 3.7 for KS = 6.98 km corresponds

to the -5.5 dB point on the £ versus A_ curve in Figure 3. TFigure 3.8 illustrates

t
how returns from surfaces having AS = 4,49 km and 2.73 km compare with the flat
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Fig. 3.7 Mean Return Waveforms Within the Ramp Gate Interval for a Flat Sea, A = 31.4 km
and k = 6.98 km.




T

P (t + 2h/e)

201

16

124

g = 8,16 ns
a_ = 0.4 m
h = 880 km
o, = /2 (Surface Min. At Nadir)

0 {(Flat Sea)

i
|
|
1
=
I

0.0014 1/m (AB = 4,49 km)

4"""' R
— — ks = ,0023 1/m (As = 2.73 km)
0+ t t T 1 Y T
-6

-4 -2 0 2 4 6

T {In Nanoseconds)

Fig. 3.8 Mean Return Waveforms Within the Ramp Gate Interval for a Flat Sea, As = 4,49 km

and As = 2.73 km,

gl 2,5 i = # SRR, LA KT 1 T I e TR AT et PRI AP, SRR A e PN ST R

g



sea return. For the 4.49 km return, the portion nearest the plateau region
actually appears earlier in time than the flat sea. For ks = 2.73 km, the
entire portion of the return shown in Figure 3.8 appears earlier in time than
the flat sea return, thus giving the appearance of having been scattered from
an elevated surface. This character of the return, of course, gives rise to

the sign reversal in €ps i.e., the altimeter interprets peaks in the surface

as valleys.
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Appendix A

This Appendix contains a tabulation of weighting coefficients for the
optimum undulation and slope extraction filters. The "T" column is
incremented by 0.1 seconds corresPOndiﬁg to the output altitude data rate.
The "H" column is a list of the corresponding weights for extracting geoidal
undulation data. The "DHDT" column is a list of the weights for extracting
geoidal slope data. As discussed in section 3.1, both columns of weighté
should be renormalized based on the truncation point selected for the data

processing.
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Appendix B

In the course of the analysis presented in section 3.2, it will be
necessary to evaluate integrals of the form
-] 1 )2
_ 252 ¢PT) (Zas )
= I —1P=T d ’ (Bl)
I f e n CUZ[p ] P
5 .
The purpose of this Appendix is to demonstrate how these integrals may be

evaluated. First, we substitute n = p-T in (Bl), then

2a
[<4] 8
- 207 2a
I =f e I —-—f—n)dn
o\ cg

-T

which can be split into two integrals, i.e.

2 2
© _ N 0
e}

207 (2a_ T 267 4 2a_
= —_—— -+ ’ e
I fe In(coz n) dn f e In ( s n ) dn (B2)

0 -T

The first integral can be found in standard references on integrals of
Bessel functions and
. a, 2
n’, o 2
2g 2a

o
- a
' S viwm g s :
i|l—n)dy = e 1 =
_[ © _n(c02 ”) n 2 n/, (czoz) (83)
Q

'.'.,..-
-

-

For the second integral in (B2), we will only be concerned with that portion

of the return for which IT|§~T5/ *, thus

2
! /
s

).

Because of jltter and sea-state effects, the 3dB pulsewidth of the system

Zas ?és
Y —= < —=
ca? Inl < co?

*Ts is defined as the 3 dB width of the system point target response
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point target response will always be less than or equal to 1.670, thus .

2a a 1.67a
5

L] ]
< — . =
ca? Inl < co? (1.670) co

For the case to be considered here, a = 0.4m and o = 8.16ns, thus
2a ’

E?;r Inf < 0.272

Therefore, for the second integral in (B2) we may use the small argument

ZaSn
gpproximation for In' ( /ccz) or
Zas -
285 (ccrz lnl ) ' . Ep_
In co? N} *=3 i'ﬂl s 2
2 T{(n+l)
Therefore, for Ti o]
o _ _ 1 _ 2as 0 o n?
207 ZaS (-—Ea-z) - 207 n
y Ta\eo? M) ¢ = Al y ndn
7 / 2T (ntl) T
while for © > o
2 . n ’ 2
0 n : 2a o _n
~ 257 S 207
20 2as ) (_chr ) (-1)“’ . o,
e IL\gzn)dn 3 g — e n dn
d n\¢ 27T (nhd) :

'/‘

The above integral can be evaluated by noting that

O 0
2.2 P

- 2.2
fe am nndfl = lim ln __ir,l.fe amn andn
. - n
b'+o(2) db }

=T =T
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2

b .
N ]
n a
= 1im i /En dn I-e erf (/an + bf)]
b+o -l (-2)"2/a db L a
-T
Thus,
0 - _2.“2
f 20 Vo1 o T
J e d = erf (——
n > (m,z_)
i . 2
2
o __n _ (i_)
207 5o - \g/2
/ne dn=- =—~"[1+e ]
2
T 2 T 2
0o ok (“rovz )
2 271 o T 4T
n‘e d —— | 1 + erf ———) - —
2 vy
T
and
o -l
20 (Zas
fe IO.EZ‘W) dn _ v’z_;rc erf [T
-T \ovz]
_n? T 2
o 207 2a_ 2 a - ov2 ]
/e Il(c:cr2 Tl)d'ﬂ ~ T 9% T2co [l—e '
[ nz
Lo (e s E5] Y
| e I,{—Fn]dn = 1 + erf —)--—
2\ co 4e?o? L ov'2 /T
-T
where
e 1 T>0
T 14 T <o

If we also use the fact

2
a
I(-—g'-'z)=1 :
o\ co :

a
s 2 ¢ 1
that( /cd) 1, then
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- -2
[ T ALY (2.51s ) a; 2m ((‘_0’) ) .
e I\—r [o-Tl}dp 3 ——— + —= 1+ erf |~
! 2\co PEE B ovZ ; = (w’f)

If we substitute the values of o (8.16ns) and a (0.4m.) in the above

coefficients of the bracketed terms we find that

V2T 6 _ 10,27
2

as R

— .= 1.33

Cc

a:fiﬁ

— = 0.136
4e o

Thus, each coefficient decreases by an order of magnitude from the prior

value.
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4.0 ALTITUDE—WA%EFORM BIAS EFFECTS AND POINTING ANGLE ESTIMATION e

4.1 Waveform Bias Effects on the Altitude

The GEOS5-C radar altimeter employs a split-pate time discriﬁinator to
extract altitude error on a pulse;by-pulse basis. A typical split-gate
arrangement is shown in Figure 4.1 along with an idealized "flat-sea" average
return waveform. A discriminator curve is generated by integrating the return
waveform over the time extent of the ramp and blateau gates, multiplying the
plateau gate integrated value by 0.5, and subtracting this value from the
ramp gate integrated value. A typical discriminator curve is shown in
Figure 4.2. The discriminator curve is a function of the time variable tg
which is defined (in Figure 4D as the shift in position of the two gates 7
relative to the mean return waveform. For purposes of thié study, we will set
tg = 0 when the center of the ramp gate occurs at a round trip delay time of
2h/c where h is the true altitude of the altimeter above mean sea level and ¢
is the speed of light. Since the ramp and plateau gates are separated by‘a
fixed time interval T, a shift in the ramp gate also results in an equal shift
in position of the plateau gate. It should also be noted that when the center
of the ramp gate occurs later (or earlier) in time than 2h/c, tg will be
greater (or less) than zero.

The three most important characteristics of the discriminator curve are;

(1) the width of the linear position of the curve, (2) the slope of the curve

about E(tg) 0, and (3) the shift (or bias) of the intercept or E(tg) = 0

I

from the tg 0 point. A large linear range of the discriminator curve

is desirable since it permits a one-to-eme correspondence between E(tg) and

tg for large tracker excursions. The slope must be selected based on sensitivity
and stability criteria which are dictated by the design of the remaining portion
of the tracker lo?p. The bias or shift of the €(tg) = 0 point away from tg = 0
is a consequence of changes in the mean return waveform [1]. All of the above
three characteristics are functions of the mean return waveform. In this

study, we will investigate how the linear range, slope and bias of the GEOS-C
discriminator curve depend on pointing error and sea-state. We will also
Investigate a slipghtly different gate configuration which results in a reduced

bias for small or moderate waveheights without any sacrifice in the discriminator

curve's linear range or slope. This alternate gate configuration demonstrates
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the desirability of an adaptive tracker system. No consideration was given
te a 3 or 1 ns system since the results presented here for a GE0S-C type system
indicate that the bias errors will be very small and in addition, knowledge

of the "sea-state" will permit correction of the bias to a very small value.

4.1.1 Analysis

The mean return waveform for short-pulse altimeters operated at or near
nadir is a convolution [2] of the system point target response, the flat-sea
impulse response, the waveheight probability density function, and the. tracking
1obp jitter. For purposes of this study, we will ignore the tracker loop time
jitter since it will be relatively small for GEOS-C, i.e., Uj ~ 3 ns. A
Gaussian function will be used to describe the system point target response
‘since previous studies [3] have shown that this is a reasonable approximation.
That is, if we denote pr as the peint target response, then

T2
P (1) =e ) (EEE) (1)
pt o -

and the half-power pulsewidth (PW) is related to the standard deviation of the

Gaussian approximation (Up) by the following,

ci = 0.181(FW)2.
Similarly, the waveheight probability density function will be assumed to be

Gaussian, i.e.,

4 2

-~ - --I'I-—z
202
P (2) = —1 e s )
88 3 H
2m0”

where Og 1s the rms rougﬁﬁess of the ocean surface. The convolution of (1)

and '(2), with z converted to two-way ranging time, yields the following

Gaussian function

P (0sP (@) = T e (3)
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where

' f2052'
o = (C_U—)+1'_

p

For the Intensive Mode of GEQS-C, we are dealing with a pulsewidth
limited geometry, thus we need only consider the shape of the antenna pattern
very near boresight in computing the mean return waveform. We may, therefore,

approximate the antenna pattern as circularly symmetric and Gaussian, i.e.,

- ?Sin 4] (4)

L4

GA(B) = Goe

where Go is the boresight gain, 6 1is the angle measured with respect to
boresight, and Y is the antenna pattern taper factor. If we match (4) to the

measured pattern at the 1/2-power point, we find that

v = 2.895 sinz(B—g), (5)

where BW is the 3 dB beamwidth of the measured antenna pattern. Under the
Gaussian antenna pattern assumption, it has been previously shown [3] that the

flat-sea impulse response is given by

e?2%c /1 o° (&) L . 2,
P, (1,E) = = exp {- ~{- —528 5 _
i @y et L 33 YL et .2
(EE + 1) _ ('2"1; + 1)
. -2 n
cT .2 . (-1) T{nt+1/2)
,-_{1"(211 D }Sm' F’]f Z T{atl)
' . n=o0
. el
‘1 (% + 121 f‘—si“—-g% [tanEV(% + 1)2-1] (6)
Y(-g—;— +1) )

for T > 0 and Pi(T,E) = 0 for T < 0, where £ is the pointing angle of the
antenna boresight with repsect to nadir. The complete mean return waveform

is convolution of (6) and (3), i.e.,
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e

2
4 cos et =2 2
- ?[l - ; -—{1 - (-i‘ﬁ"f" 1) . }Sil‘l €]$
(2 .

P(1,8) =T f[%Jr 1177 exp

cT
1_1+].)

'eng 22 2 | T (atl)
n=0 | Y(?_h +1)2

-[tanE, \/( +1) -1] T, ¢))

-2 D@ /2) [‘/( 1y2_y 4 sin 28 ]

where

220 77 (5 [20 2 ]'1’2
( 1

33 )+

Um hL €9,

and the In(~) are Bessel functions of the second kind and order n. If we let

x =1/ & /2 and g = co_a/h V2 then (7) becomes
p .

P
P _(t,£) = I'o aﬁf [qx+l]—32xp z - 4 [ - 'cosz —{1 - (qx+1)—2}sin25]£
r P ¥ (q:t:+].)2 '
, o ‘
2 D T@H/2) [ L 4 sin 25]
sexpi—{(-x+ L (qx-!—l) -1 =2 es
{ Upa\lf) } et ['(n+l) ‘/ Y (qx+l)

s a
I -[tang '(qx+l)2-l] dx (8)

For GEOS-C, the point target response half-power pulsewidth (FW) will be

assumed to be 12.5 mns; thus, oy = 5.32 ns. Since the beamwidth of the GEOS-C

antenna is about 2. 6 degrees, Y = 1.49 x 10 3. The altitude of the GE0S-C

spacecraft will be about 8&}0 km, hence q = 1.28 x 10 Provided we restrict
the range of T to less than, say 500 ns, we can ignore all terms in the

series in (8) except for Io(-) gince for £ ¢ 3° the factor raised to the nl:b—
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power is very small but dominant. To evaluate the remaining integral, we note
that all terms inside the integral show a small variation compared to the

Gaussian pulse shape factor, and also

1—(qx+l)_2c052€ = l-coszE(l-qu)

= sin2£ + 2qx coszg
and _
[1-(qxt1)~2]sin’E * 2qx sin’g

‘ and

J@®-1 .

(qx+1)

2qx.

Hence, for 0 < T ¢ 500 ns and £ 5 3°,

Pr(T,E) = dea /EE-expﬁ—-é{sinzg + -—29~—-Tcoszg]

oo V2
P
- (—x+-———37r0
.1 (4311125-; 2qT )fe Gpa 2 dx (9
o Y
. cpoa\ﬁ )
or
4 2 4e
- =8in"f - —cos2ET
P (1,8) = Topa VSre Y e B
4 Ve sin2E IR | T :
oI G V) g 1erE( M ¢ - (10)
- vy /h 0,0 V2

When T < 0, we see from (8) that the correct expression for Pr(T,E) is

_ 2
- 7sin 2 1 T
C P (1,§) = To o /2T e 3EE.+erf( _)]E . - (11)
P opa 72
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The approximate expressions given by (10) and (11) have been checked with
results obtained by numerically integrating (8) and the agreement was found to
be excellent.

We normalize (10) and (1l) to account for the action of the AGC and form
P.(7,&) where )

Pr(T,E) = A(T) { [1+erf(c - /_ } (12)
and e
- cos2ET
e T I (-——5—”’25 /o 0 (13)
Y vh
Alr) =
1 - T < 0.

The discriminator curve 1s obtaiﬁed by integrating (12) over the time expanse
of the ramp and plateau gates, multiplying the integrated plateau value by
0.5 and subtracting this value from the integrated ramp value. If E(tg) is

the discriminator curve, then

T, T

G G
= + tg T + > + tg
_ v ge o L s
seg = [ wee)F T - 3 [ st e aw
-7 ’ T
G : '~ G
2 + tg . T - 2 + tg

where we have assumed that the ramp qu platean gate lengths are equal and

TG = gafé length,
w(T) = gate weighting function,
T = time delay between the start of the ramp gate and the
start of the plateau pgate.
o tg = time shift in the position of the center of the ramp

gate with respect to the total two-way delay time of 2h/c.
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For GE0S-C, the gate width TG is matched to the pulsewidth, thus, T, = 12.5 ns.

G
Since
and %ﬁ cos2f << 1
4 V¢ sin 2F e 1
Y /h '

and the argument of Io(-) in (13) wvaries as -/?, the factor A(t) is almost

constant over the ranges of integration in (14) and

T
G
—‘-2- + tg
) e(ty) = Altg) f w(T-t Y[lterf(——))dt
o _ 2 & o V2
5 + tg
T
G
—2— + tg
E(s 4T . -
- ——f——— f w{T-T~-t_)[1l+erf (——) ldT (15)
: & oo 2 '
To - : ~ P
T - ) + tg

Ty
2
f w(T)dT = 1,
’ ¢
2
T
thus : ._.G-+t
. 2 g
A(t ) A(T+t ) A(t) .
ety = % -~ =5 v ert—
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A(T+t ) f , ' Serf T34
- — B w{T-T-t Jeri{(——)dT
4 & oo fi) .

T

G
T - 5 + tg

The exact shape of the gate weighting function is not known, however, we will

assume that it is rectangular, i.e.,

1 -T T
= "¢ ¢
Te¢ 237272
w(T) =
G
o - It >—.

The time discriminator curve thus reduces to the following form;

.LGI
: _ oav2 —xZ
e(t ) = 0.5{A(t ) 1+-E-T—-—Gc erf x + =
& & G NG
(—TGIthg)/Upu /5
| (T+Tg/ 2+t g) fopa V2
B o o2 —x?
~0.SE(T+e )[ 1 + —E—T———éc erf x + < ) . @8
G v
< - (T-Tg/24eg) 0,0 /2

Equation (16) can be rewritten in a somewhat more convenient form as follows:

s(tg)-= 0.5 K(tg)[1+s([tgtTG/2]/cpa-./'IS]

-0.5K(T+tg) [1+s([T+tgtTG/2]/§pa m]} 17

where S(-) is easily deduced from equation (16). We note from (13) and (16)
that the A(-) are functions of antenna pointing angle and pattern and altitude
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"while the S(+) are the gate responses to a mean return waveform whlch is
free of antenna and pointing angle effects. However, unlike the mean returﬁ o
waveform in equation (12), the discriminator output is not a simple product
of these two factors. -

Equation (16) provides a very rapid means of evaluating the performance
of split-gate time discriminator systems. It is a significant result in
itself since it results in a closed form expression. Prior studies of
discriminator-optimization have been hindered by the necessity of accomplishing
a three-fold numerical integration for E(tg), i.e., a two—dimensional surface
integration to obtain Pp(T) and third integration to determine the gate response
to Pr(T). The above formula has been applied to the Skylab 5-193 radar
altimeter where the pulsewidth is considerably lomger (72 ms, 3 dB) and the
antenna beamwidth smaller (1.5°, 3 dB). The particular combination of pulse-
width, beamwidth and altitude (435 km) for Skylab results in a mean return
which is neither completely beamwidth nor pulsewidth limited. However, the
results obtained from (12) and (16) were in excellent agreement with numerical
integration calculations. We therefore conclude that (12) and (16) have a
greater range of validity than the approximations would tend to indicate. It
is interesting to note that from equation (il} it can be shown that the peak
of the average return power decreases as exp(-4 sinzgfy) for very near nadir
and as 1/sin2f further away from nadir. Such knowledge of the decrease in
return power as a function of pointing error is very important in designing

the proper AGC dynamic range of the altimeter receiver.

4.1.2 Results

In the following we will present results on time discriminator bias,
slope and linearity as a function of pointing angle and waveheight. Figure
4.3 shows the dlscrlmlnator curve for the GEOS~C gate configuration (where
the ramp and plateau gates are separated by 50 us (T = 62.5 ns)}, an rms
waveheight of 0.1 m, and pointing angles of 0° and 1.5° off-nadir. Apart
from a shift in the bias point, i.e., the value of te such that S(tg) =
there is no appreciable change in the shape of the curve. We note that the
linearity range is about -0. 3T ty <0. BTG Figure 4.4 demonstrates the
effect of a 1.0 m (rms) surface waveheight on the discriminator curve.
Comparing these results wiih those shown in Figure 4.3 indicates a slight
jncrease in bias and a decrease in slope while the linearity range increases

to —0.¢rG$tg:S*0.3TG. The decrease in slope will decrease the equivalent gain
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of the tracker loop and increase its settling”time;dhoweéer, éiﬁcéAthe dﬁénium'

loop bandwidth is unchanged there will be no appreciable increase in tracker

jitter. Figure 4.5 illustrates the effect of a 2.5 m (rms) wavehéight on

the discriminatbr curve. Although the linear range of the curve increases,

there is a marked reduction in slope and the bias is seen to increase both in

magnitude and sensitivity to pointing angle. Figure 4.6 summarizes the

resultant altitude bias errors as a function of pointing error and waveheight

for the GE0S5-C Intensive Mode. , | .
The rather large gate separation in the GEOS-C Intensive Mode tracker

loop places the plateau gate in that region of the return waveform which is

sensitive to pointing errors. By reducing this separation, it should be

possible to reduce the sensitivity of the bias to pointing angle. Figures

4.7, 4.8 and 4.9 show discriminator curves for a gate sepdration of 12.5 ns

and waveheights of 0.1, 1.0 and 2.5 m (rms), respectively. For waveheights

of 0.1 and 1.0 m, we note a reduction in bias error and sensitivity to poiﬁting

angle without any significant change in linear range or slope from that obtained

with the 50 ns gate separation. However, when the waveheight increases to 2.5m

(rms), there is a marked increase in aititude bias aithough the sensitivity to

pointing angle remains small. In addition, the linear portion of the dis~

criminator curve is no longer centered about the bias point but has shifted

"to the right of the bias point. The bilas errors for a géte separation of

12.5 ns are summarized in Figure 4.10 and it is noted that the 12.5 ns gate
separation provides improved performance over the 50 ns separation for low to

moderate seas but is very poor for high seas.

Figures 4.11, 4.12, 4.13 and 4.14 show the discriminator curves and bias
errors for éontiguous tracking gates (no separation). We note that the linear
range of the discriminator curves are Teduced relative to the 50 and 12.5 ms
gate separation cﬁfves. As shown in Figure 4.14 the bias errors for contiguous
tracking gates are much more semsitive to waveheight than the 12.5 and 50 ns

configurations.

4.1.3 Conclusions -
In this study we have obtained a concise closed form expression for a
split-gate time discriminator curve applicable to the GEOS-C Intensive Mode.

Results for the GEOS-C tracking gate configuratibn indicate bias errors on the
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order of a few centimeters for the anticipated fange of pointing errors and.
waveheights. By reducing the gate separation to one gate width, the bias
errors ﬁay be decreased by about a factor of two for small to moderate wave-—
heights. For large waveheights the blas error resulting from the 12.5 ns gate
separation increasés significantly. In view of this fact; the optimum tracker
in the sense of minimum bias error might well be one in which the gate spaecing
is variable and dependent upon the waveheight. For the extreme case of
contiguous tracking gates, the altitude bias errors are much more sensitive

to waveheight than the 12.5 and 50 ns gate separations.

4.2 Pointing Angle Estimation Using the Attitude/Specular Gate

In the process of analyzing Skylab 5-193 radar altimeter data, it was
determined that the pointing angle of the antenna (relative to nadir) could
be accurately inferred from the shape of the trailing edge portion of the mean
return. Although the GEOS-C altimeter éoes not have Sample-and-Hold‘gates o
located in the traiiing edge of the return (as did Skylab), it does have a
200 ns long integrating éate located in this poétion of the return. This
particular gate has been termed the "Attitude/Specular' gate; by comparing the
time averaged output of this gate with the output from the Plateau gate, it
has been proposed that the pointing angle may be‘determined. The purpose of
this section is to investigate how accurately the pointing angle of the antenmna
can be estimated using this technique.

Figure 4.1 illustrates how the tracking gates are nominally located
relative to the idealized return. For both the Intensive and Global Modes,

the width of the Artitude/Specular gate is 200 ns and the separation between

it and the ramp-gate is 700 ns. For this study we will make the following

assumptions:

(1) tracker j;tter, Uj, is much‘fgss than a pulsewidth and can
be neglected;

(2) the tracker gate bias error due to pointing error and sea
state effects 1s small relative to the pulsewidth and may
be neglected,. i.e., tg = (3

(3) the system point target response is Gaussian with a 3 dB
pulsewidth equal tp 12.5 ns (IM) and 200 ns (GM);

" (4) the nominal altitude is 843 km; '

(5) the antenna half-power beamwidth is 2.6°.
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Since we will be dealing with the Plateau and Attitude/Spcecular energies,
the neglect of tracker jitter and bias is certainly justified since these
effects cause relatively small changes in the location of these gaﬁes.

Let Pr(T) be the post-video mean return power which has not been
‘normalized by the AGC gain. Since we are neglecting jitter, the average
Plateau gaﬁe energy is given by

T1+TG/2

“e‘p = GAGC f Pr('r)d'r | (18)

T —TG/2

1
when the GE0S-C altimeter is in acquisition and tracking, the gain of the

AGC is adjusted so that the average Plateau gate energy is one; thus,

T +TG/2 -1

1

GAGC = [Pr(T}dT - | (19)

Tl—TGIZ
The average Attitude/Specular gate energy is similarly given by

T2-TG/2+Ta/S

. Ea'l'S=GAGC fPr(T)dT (20)

?Z'TGIZ
o

As per GE's propééed method for determining the pointing angle, the quantity

of interest is the difference, A, between Eé and Eﬁ/s’ i.e.,

L A=1- eals (21)
For the Gleobal Mode, Tg = 200 ns aund Ta/s = 200 ns, so we are integrating over

P
to one. TFor the Intensive Mode, T, = 12.5 ns and T = 200 ns, and e will
G als afls

comparable time intervals to form e, and Eé/s and A will be less than or equal
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be roughly 16 (200/12.5) greater than E;; thus ]A]>>1. To make A(for both the -

Global and Intensive modes) less than or equal to one, we define AIM as

_q1_.6 = -
Ay =Ll -7—8 /¢ _ (22)

then using (20) for the Global mode and (22) for the Intensive mode, we see

that A and AiM will be on the same numerical scale. It should be noted that
if ea/s is constrained to a certain numerical range, then there must be some
scaling in the hardware in switching from Global to Intensive mode since e.p

is obtained from different gate widths in the two modes.

Using the previously derived expressions for the mean return waveform,
results have been obtained for A and &IM as a function of pointing angle and
they are shown in Figure 4.15. It is interesting to note that for both modes
of operation, A is relatively insensitive to pointing angle. The reason that
the Global mode curve is less sensitive to pointing angle than the Intensive
mode curve is as follows. For the Intensive mode, the AGC gain*is relatively
independent of pointing angle because the mean return waveform does not vary
appreciably (over the Plateau gate) with pointing angle. Thus, AIM is determined
almost coﬁpletely by the integral*over the Artitude/Specular gate. For the
Global mode, the AGC gain*decreases with increasing pointing angle while the
integral*over the Attitude/Specular gate increases. Thus, the product*as

defiﬁed by (20} remains essentially constant.

Since A is the difference of the mean values of two statistical quantities,
we must know the variance of ‘A in order to state how accurately we can actually
estimate the pointing angle. There are essentially two error sources involved
in our estimation of A. The first is due to the noise-like nature of the
return signal andrthis is a random efgar. Unfortunately, it is extremely
difficult to comﬁute Var (A) because such a computation requires knowledge of
the autocorrelation function of the non-stationary return waveform process.

The other important error is due to biases in converting E% and E;/s to telemetry
units and then back to -engineering units. In other words, there is an error
associated with the A/D and D/A conversion process. As per the system speci-
fication [4], this error is estimated to be #1% of the recorded value. Thus,

the bias error for & is given by €y, where

*The AGC gain and integrated gate values as referred to here are equivalent
to the QUﬂntities defined in (19), (18) and (20) normalized by the factor
exp[+4sin“E/Y], (See Sec. 4.1, equations (10) and (11)).
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Fig. 4.15 A Plot of the Attitude Estimation Function
Versus Pointing Angle for GEOS-C with h = 843 km.
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The worst case bias error is seen to be

e = +.01+.01(1-A)

= +[.02-A]

A plot of Aigb ig shown in Figure 4.16. We note that the basic errors involved
in converting eP and E;/S to telemetry units and back to engineering unitsl
limits the angle estimation process to about 0.5 degrees. Thus, we conclude
that the use of an Attitude/Specular gate to estimate pointing angle is no

more accurate than about 0.5 degrees. On the other hand, because of the
relatively large antenna beamwidth, we question whether a 0.5 degree éointing

error will be an important factor.
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